

Sequential Addition Reactions of Lithium Acetylides and Grignard Reagents to Selenoiminium Salts Leading to 2-Propynyl Tertiary Amines Bearing a Tetrasubstituted Carbon Center

Toshiaki Murai,* Sho Nogawa, and Yuichiro Mutoh

Department of Chemistry, Faculty of Engineering, Gifu University, Yanagido, Gifu 501-1193

Received June 11, 2007; E-mail: mtoshi@gifu-u.ac.jp

Selenoiminium salts generated in situ from selenoamides and MeOTf were reacted sequentially with lithium acetylides and Grignard reagents to give 2-propynyl tertiary amines bearing a tetrasubstituted carbon center. The lithium acetylides used were generated from (trimethylsilyl)acetylene, phenylacetylene, and 1-hexyne. Among them, that obtained from (trimethylsilyl)acetylene most effectively gave the corresponding products in higher yields. As Grignard reagents, alkyl-, vinyl-, allyl-, and benzylmagnesium halides gave the products with high efficiency, whereas the reaction of arylmagnesium halides did not proceed as well. A variety of 4-penteneselenoamides were synthesized by four-component coupling reactions of terminal acetylenes, elemental selenium, allylic bromides, and secondary amines, and subjected to the sequential addition reactions to give 5-amino-1,6-enynes. The diastereoselectivity of the reaction was found to depend on the substituents at the α -position of selenoamides and Grignard reagents. In the reaction of selenoiminium salts with excess Grignard reagents, amines that incorporated two molecules of Grignard reagents were formed in good yields.

The development of multiple-component coupling reactions leading to valuable compounds is an important issue in modern synthetic chemistry. Recent studies have been focused on new synthetic routes leading to 2-propynylamines. The in situ condensation of aldehydes and amines, followed by the addition reaction of acetylenic nucleophiles gives the corresponding amines.² However, these methods are not suitable for the reaction of ketones. Therefore, the resulting 2-propynylamines possess a trisubstituted carbon center adjacent to a nitrogen atom. On the other hand, those with a tetrasubstituted carbon center attached to a nitrogen atom are rarely prepared.³ Alternatively, we recently developed sequential addition reactions of organolithium and Grignard reagents to thioiminium salts derived from thioamides leading to tertiary 2-propynylamines bearing a tetrasubstituted carbon center (Scheme 1).4 However, in this reaction, a large excess of Grignard reagents is used, probably because of the low reactivity of in situ-generated gem-thioamino compound toward Grignard reagents. Selenium isologues of thioamides, i.e. selenoamides, 5 have been believed to be more reactive than thioamides, but can be handled under air. Therefore, the development of new methods for the synthesis of selenoamides is still an active area.⁶ If selenoamides are used instead of thioamides in the reaction in Scheme 1, the reaction is expected to progress to completion under milder reaction conditions. Furthermore, during the course of our studies on thio-,7 seleno-,8 and telluroamides,9 we have devised four-component coupling reactions of terminal acetylenes, elemental selenium, amines, and allylic bromides to give 4-alkenyl selenoamides (Scheme 2).¹⁰ Application of the reactions shown in Scheme 1 to selenoamides in Scheme 2 enables us to provide unprecedented synthetic routes to 5-amino-1,6-enynes. We report here the details of

$$\begin{array}{c} S \\ R \\ NR'_2 \end{array} \xrightarrow{MeOTf} \begin{bmatrix} MeS \\ R \\ NR'_2 \end{bmatrix} \xrightarrow{R"C \equiv CLi} \\ \hline R'_2N \\ R" \end{array} \xrightarrow{SMe} \begin{bmatrix} R"MgX \\ R" \\ R" \end{bmatrix} \xrightarrow{R"MgX} \begin{bmatrix} R'_2N \\ R" \\ R" \end{bmatrix}$$

$$\begin{array}{c} R"MgX \\ R" \\ R" \\ R" \\ Scheme 1. \end{array}$$

$$\begin{array}{c} Se \\ 3) R'_2NH \\ 4) \\ \hline Scheme 2. \end{array}$$

the sequential addition reaction of lithium acetylides and Grignard reagents to selenoiminium salts.

Initially, to compare the reactivity of selenoamides with that of thioamides, selenobenzamide $\mathbf{1}^{11}$ was reacted with MeOTf, followed by the addition of lithium (trimethylsilyl)acetylide (1.5 molar amount) (2a) and ethylmagnesium bromide (3a) (Scheme 3). After aqueous workup, 2-propynylamine 4 was obtained in 77% yield. As expected, the synthesis of 4 was achieved with 3 molar amount. of 3a, which is in marked contrast to the reaction of the thioiminium salt derived from thiobenzamide 1', where 10 molar amount. of 3a was required. In this reaction, despite the fact that excess organometallic reagents 2a and 3a were used, products in which two molecules

Me₃SiC≣CLi

of 2a or 3a were introduced were not observed. In the initial stage of the reaction, the addition of lithium acetylide 2a to selenoiminium salt 5a gives gem-selenoamino compound 6a. The substitution reaction of 6a with 3a with the elimination of a MeSe group proceeds smoothly to form 4. We previously observed that aqueous workup of the reaction mixture of selenoiminium salts 5 and lithium acetylides 2 gave 1-alkenyl ketones 8,12 which were probably formed via the 1,3-rearrangement of 6 to 7 followed by the hydrolysis of 7 (Scheme 4), but the corresponding ketones 8 were not detected in the reaction in Scheme 3. This suggested that the substitution reaction of 6a with 3a proceeded effectively. In this substitution reaction, it is of interest whether it proceeds by S_N1 or by S_N2 mechanism. No clear results supporting either mechanism are obtained at present. However, on the basis of the Grignard reagents-dependent diastereoselectivity vide infra, iminium salts 6a' may be formed prior to the addition reaction of Grignard reagents.

Next, selenoamides **9** derived from the four-component coupling reaction in Scheme 2 were subjected to the sequential reactions. The results of the reaction of 4-penteneselenoamide **9a**, lithium (trimethylsilyl)acetylide **2a**, and Grignard reagents **3** are shown in Table 1. The reaction of the selenoiminium salt derived from **9a** and MeOTf with **2a** went to completion within 0.5 h below room temperature. On the other hand, the reaction conditions leading to the desired amines depended on the substituents on the Grignard reagents. The addition of aliphatic Grignard reagents, such as methyl, ethyl, and cyclohexylmagnesium halides **3a–3c**, proceeded at room tempera-

Table 1. Reaction of Selenoamide **9a** with MeOTf, Lithium Acetylide **2a**, and Grignard Reagents **3**^{a)}

a) All reactions were carried out with selenoamide 9a (0.50 mmol), MeOTf (1 molar amount), lithium acetylide 2a (1.5 molar amount), and Grignard reagents 3 (3 molar amount) in Et₂O (5 mL) unless otherwise noted. b) Isolated yield. c) The reaction was carried out with 9a (1.0 mmol).

ture to give the corresponding amines 10–12 in good yields (Entries 1–3). The use of vinyl-, allyl-, and benzylmagnesium halides 3d–3f also took place in a similar fashion under the same reaction conditions to lead to 13–15 (Entries 4–6). In particular, crude product 14 prepared from 3e was highly pure and further purification was not necessary (Entry 5). On the other hand, the reaction of aromatic magnesium halides required higher reaction temperatures and longer reaction times. For example, to the reaction mixture of 9a, MeOTf, and 2a was added 4-methoxyphenylmagnesium bromide (3g), and the mixture was stirred at reflux for 6 h (Entry 7). Nevertheless, the corresponding amine 16 was formed in only 39% yield.

2

3

4

5

Me₂N

Me₂N

18 65%

19 47%

20 68%

21 67% (3:1)d)

OMe Et

Εt

Bu-n

SiMe₃

MgBr 3e

rt, then

reflux. 2 h

EtMgBr 3a

rt, 17 h

EtMgBr 3a

rt, then reflux, 2 h

EtMgBr 3a

rt, then reflux, 6 h

R'C≡CLi Se R_2N 2 MeOTf R"MgX 3 Et₂O 0 °C, then R 17-21 rt. 30 s rt, 1.5 h Selenoamide 3 Product Entry 2 Yield/%b) Conditions Me₂N Se 1^{c)} PhC≡CLi 2b EtMgBr 3a NMe₂ rt, then 9a reflux, 22 h **17** 60%

PhC≡CLi 2b

n-BuC≡CLi 2c

Me₃SiC≡CLi 2a

Me₃SiC≡CLi 2a

NMe₂

NMe₂

9a

9a

9b

MeO

Se

Table 2. Reaction of Selenoamides 9 with MeOTf, Lithium Acetylides 2, and Grignard Reagents 3a)

a) All reactions were carried out with selenoamides
$$\bf 9$$
 (0.50 mmol), MeOTf (1 molar amount), lithium acetylides $\bf 2$ (1.5 molar amount), and Grignard reagents $\bf 3$ (3 molar amount) in Et₂O (5 mL) unless otherwise noted. b) Isolated yield. c) Selenoamide $\bf 9a$ (0.75 mmol) was used. d) The yield was determined by NMR spectra. The product was given as a mixture of two stereoisomers after column chromatography. A diastereomeric ratio is shown in parenthesis.

Various types of selenoamides 9 and lithium acetylides 2 were also used, and the results are shown in Table 2. The addition reaction of lithium acetylides 2b and 2c derived from phenylacetylene and 1-hexyne to the selenoiminium salt derived from 9a was complete within 1.5 h, but longer reaction times and higher temperatures were necessary for the addition reaction of Grignard reagents 3a and 3e (Entries 1–3), unlike the case of 2a shown in Table 1. Generally, lithium acetylide 2a derived from (trimethylsilyl)acetylene showed higher efficiency in the reaction. The substituents on the nitrogen atom of starting selenoamides 9 also affected the reaction conditions. For the reaction of 9b and 9c, the addition of Grignard reagent 3a was achieved at reflux (Entries 4 and 5). In the latter case, two diastereomers were obtained in a ratio of 3 to 1.

The stereochemical aspects of the present reaction were elucidated with 2- or 3-substituted 4-penteneselenoamides **9d-9h**. The results are shown in Table 3. Due to the high efficiency of the reaction of lithium acetylide **2a** as noted above, **2a** was added to the selenoiminium salts derived from **9d-9h**. For 2-phenyl selenoamide **9d**, one of two diastereomers was predominantly formed, and the ratio depended on the Grignard reagents used (Entries 1–3). The replacement of a *N*,*N*-dimethyl group with a pyrrolidinyl group did not improve the stereo-

selectivity (Entry 4). The 2-methyl selenoamide 9f showed relatively lower selectivity (Entry 5), whereas in the reaction of 2-cyclohexenyl selenoamide 9g, the formation of only a single stereoisomer was observed in ¹H and ¹³C NMR spectra (Entry 6). In contrast to these successful results, 2-t-butyl selenoamide 9i did not undergo sequential addition reactions to give the desired amine 29 (Scheme 5). In place of the Grignard reagent 3a, a hydrogen atom was introduced to the carbon atom attached to the nitrogen atom to give 30 in 29% yield. To determine the origin of the hydrogen atom, a reaction mixture consisting of 9i, MeOTf, and 2a was trapped with D₂O, but the incorporation of deuterium atom was not observed, and the amine 30 was formed again in 29% yield. This shows that the formation of 30 was independent of the presence of 3a. Additionally, the deposition of red selenium was not observed, which implied that the MeSe group in in situ-formed gemselenoamino compound 31 was eliminated as a divalent selenium species. Therefore, 31 may undergo 1,3-shift of the hydrogen atom on the methyl group to the carbon atom adjacent to the nitrogen atom to lead to the formation of 30 and decomposed products of selenoformaldehyde, 13 although further studies are necessary to clarify this possibility (Scheme 6).

Finally, the reverse sequential addition reaction, i.e. the

Table 3. Reaction of 2- or 3-Substituted 4-Penteneselenamides 9 with MeOTf, Lithium Acetylide 2a, and Grignard Reagents 3^{a)}

Entry	Selenoamide	Grignard reagent conditions	Products / Yield ^{b)}
1	Se NMe ₂	EtMgBr 3a rt, 21 h	Me ₂ N Et 22 SiMe ₃ 68% (9:1)
2	Se NMe ₂	MeMgBr 3b reflux, 3 h	Me ₂ N Me SiMe ₃ 23 47% (5:1)
3	Se NMe ₂	i-PrMgCl 3h rt, 15 h	Me ₂ N 24 76% (6:1)
4	Se N 9e Ph	EtMgBr 3a rt, 22 h	N Et 25 71% (7:1)
5	Se NMe ₂	EtMgBr 3a rt, 21 h	Me ₂ N Et 26 SiMe ₃ 51% (2:1)
6	Se NMe ₂	EtMgBr 3a rt, 21 h	SiMe ₃ 27 51% (single isomer)
7	Ph Se NMe ₂	EtMgBr 3a rt, 2 h	Ph NMe ₂ 28 87% (1:1)

a) All reactions were carried out with selenoamides 9 (0.50 mmol), MeOTf (0.50 mmol), lithium acetylides 2 (0.75 mmol), and Grignard reagents 3 (1.5 mmol) in Et₂O (5 mL) unless otherwise noted. b) The products were obtained as mixture of diastereomers. Although the relative stereochemistry of the products was not determined, their ratio was determined by ^1H NMR spectra of crude products, and is shown in parentheses.

addition of Grignard reagents prior to the addition of lithium acetylides, was carried out. Grignard reagent **3a** (1.5 molar amount) was added to selenoiminium salt **32** generated from **9a** and MeOTf, and the mixture was stirred for 0.5 h. Lithium acetylide **2a** (3 molar amount) was then added to give amine **34** in 58% yield along with amine **10**, where both **3a** and **2a** were incorporated (Scheme 7). In this reaction, two molecules of **3a** were introduced into the product **34** with high efficiency, whereas the introduction of **2a** proceeded with low efficiency. This indicated that *gem*-selenoamino compound **33**, which was formed by the addition of **3a** to **32**, was highly reactive toward

Grignard reagents. In fact, the reaction of **32** with 3 molar amount of Grignard reagents effectively gave the products **34–36** which incorporated two molecules of Grignard reagents, in good to high yields (Scheme 8).

Conclusion

In summary, we have demonstrated the sequential addition reaction of lithium acetylides and Grignard reagents to selenoiminium salts derived from selenoamides and MeOTf. The reaction proceeded under milder reaction conditions compared to a similar reaction using thioiminium salts to give tertiary

Scheme 5.

$$H$$
 H
 H
 H
 H
 H
 Se
 t -Bu
 $SiMe_3$
 $Scheme 6.$

amines bearing a tetrasubstituted carbon center adjacent to a nitrogen atom. Application of the present reaction to 4-penteneselenoamides led to 5-amino-1,6-enynes, which are not readily accessible by other known methods. Substrate-dependent diastereoselectivity was observed, and a bulky substituent, such as a *t*-butyl group, disturbed the desired reaction. The order of the addition of two organometallic reagents is important. When Grignard reagents were added prior to the addition of lithium acetylides, products that incorporated two molecules of Grignard reagents, were predominantly formed.

Experimental

Typical Procedure for Sequential Addition Reactions of Lithium Acetylides and Grignard Reagents to Selenoiminium Salts. To an Et₂O (5.0 mL) solution of selenoamide 9a (0.19 g, 1.0 mmol) was added MeOTf (0.11 mL, 1.0 mmol) at room temperature, and the mixture was stirred for 30 s. To this was added lithium acetylide 2a, prepared from (trimethylsilyl)acetylene (0.21 mL, 1.5 mmol) and n-butyllithium (1.6 M hexane solution, 0.94 mL, 1.5 mmol) in Et₂O (5.0 mL) at 0 °C, and the resulting mixture was stirred for 0.5 h at room temperature. Ethylmagnesium bromide (3a) (1.0 M THF solution, 3.0 mL, 3.0 mmol) was then added, and the mixture was further stirred for 2h at this temperature. The resulting mixture was poured into a saturated aqueous solution of NH₄Cl, washed with brine, and extracted with Et₂O. The organic layer was dried over MgSO₄ and concentrated in vacuo. The residue was purified by column chromatography on silica gel (hexane:ethyl acetate = 100:1-10:1) to give **10** (0.175 g, 75%) as a brown oil; IR (neat) 3078, 2959, 2865, 2823, 2783, 2156, 1823, 1641, 1456, 1415, 1378, 1333, 1283, 1249, 1163, 1118, 1094, 1040, 1019, 993, 964, 910, 843, 760, 698, 661, 628, 572, 545, 475, 424, 405 cm⁻¹; 1 H NMR (CDCl₃) δ 0.16 (s, 9H, $SiCH_3$), 0.93 (t, J = 7.3 Hz, 3H, CH_3), 1.54–1.64 (m, 2H, CH_2C), 1.64-1.74 (m, 2H, CH_2CH_3), 2.04-2.12 (m, 2H, $CH_2=CHCH_2$), 2.25 (s, 6H, NCH₃), 4.95 (dd, J = 9.5, 1.5 Hz, 1H, $CH_2 = CH$), 5.04 (dd, J = 17.1, 1.5 Hz, 1H, $CH_2 = CH$), 5.84 (ddt, J = 17.1, 10.3, 6.3 Hz, 1H, CH₂=CH); 13 C NMR (CDCl₃) δ 0.3 (SiCH₃), 8.4 (CH₃), 27.6, 28.2, 33.6 (CH₂), 39.4 (NCH₃), 65.8 (C), 88.6,

Se NMe₂
$$\frac{\text{MeOTf}}{\text{Et}_2\text{O}}$$
 $\frac{\text{MeSe}}{\text{NIMe}_2}$ $\frac{\text{MeSe}}{\text{NIMe}_2}$ $\frac{\text{Me}_3\text{SiC} \equiv \text{CLi}}{\text{2a}}$ $\frac{\text{3a}}{(3.0 \text{ molar amount})}$ $\frac{\text{Me}_2\text{N}}{\text{O}^\circ\text{C}, \text{ then rt, 0.5 h}}$ $\frac{\text{Me}_2\text{N}}{\text{SiMe}_3}$ $\frac{\text{SeMe}}{\text{Stheme 7.}}$ $\frac{\text{Me}_2\text{N}}{\text{Stheme 7.}}$ $\frac{\text{Et}}{\text{Et}}$ $\frac{\text{Me}_2\text{N}}{\text{Stheme 7.}}$ $\frac{\text{Se}}{\text{Stheme 7.}}$ $\frac{\text{Me}_2\text{N}}{\text{Stheme 7.}}$ $\frac{\text{Se}}{\text{Stheme 7.}}$ $\frac{\text{Me}_2\text{N}}{\text{Stheme 7.}}$ $\frac{\text{Se}}{\text{Stheme 7.}}$ $\frac{\text{Me}_2\text{N}}{\text{Stheme 7.}}$ $\frac{\text{Se}}{\text{Stheme 7.}}$ $\frac{\text{Se}}{\text{Stheme 7.}}$ $\frac{\text{Me}_2\text{N}}{\text{Stheme 7.}}$ $\frac{\text{Se}}{\text{Stheme 7.}}$ $\frac{\text{Me}_2\text{N}}{\text{Stheme 7.}}$ $\frac{\text{Se}}{\text{Stheme 7.}}$ $\frac{\text{Me}_2\text{N}}{\text{Stheme 7.}}$ $\frac{\text{Se}}{\text{Stheme 7$

Scheme 8.

35

36

 $R = CH_2CH = CH_2$, 69%

 $R = CH_{2}^{-}Ph, 95\%$

106.7 (C≡C), 114.2 (CH_2 =CH), 138.7 (CH_2 =CH); MS (EI) m/z 208 (M⁺ − CH_2 CH₃); HRMS calcd for $C_{13}H_{24}$ NSi (M⁺ − CH_3) 222.1678, found: 222.1709.

This work was supported by a Grant-in-Aid for Scientific Research on Priority Area (No. 19020020, "Advanced Molecular Transformations of Carbon Resources") from the Ministry of Education, Culture, Sports, Science and Technology, Japan.

Supporting Information

Detailed experimental procedures and spectroscopic data for new compounds; this material is available free of charge on the web at http://www.csj.jp/journals/bcsj/.

References

1 For recent reviews of multiple-component coupling reactions: a) H. Nemoto, J. Synth. Org. Chem. Jpn. 2004, 62, 347. b) Y. Ishii, S. Sakaguchi, Bull. Chem. Soc. Jpn. 2004, 77, 909. c) S. Kamijo, Y. Yamamoto, J. Synth. Org. Chem. Jpn. 2004, 62, 682. d) C. Wei, Z. Li, C.-J. Li, Synlett 2004, 1472. e) K. Yamada, Y. Yamamoto, K. Tomioka, J. Synth. Org. Chem. Jpn. 2004, 62, 1158. f) G. Balme, Angew. Chem., Int. Ed. 2004, 43, 6238. g) M. Kimura, J. Synth. Org. Chem. Jpn. 2006, 64, 130. h) G. Guillena, D. J. Ramón, M. Yus, Tetrahedron: Asymmetry 2007, 18, 693. i) M. Vrettou, A. A. Gray, A. R. E. Brewer, A. G. M. Barrett, Tetrahedron 2007, 63, 1487.

2 For recent examples: a) C. Wei, C.-J. Li, J. Am. Chem. Soc. 2003, 125, 9584. b) N. E. Leadbeater, H. M. Torenius, H. Tye, Mol. Diversity 2003, 7, 135. c) N. Gommermann, C. Koradin, K. Polborn, P. Knochel, Angew. Chem., Int. Ed. 2003, 42, 5763. d) L. Shi, Y.-Q. Tu, M. Wang, F.-M. Zhang, C.-A. Fan, Org. Lett.

- 2004, 6, 1001. e) Z. Li, C. Wei, L. Chen, R. S. Varma, C.-J. Li, Tetrahedron Lett. 2004, 45, 2443. f) J. S. Yadav, B. V. S. Reddy, V. Naveenkumar, R. S. Rao, K. Nagaiah, New J. Chem. 2004, 28, 335. g) B. M. Choudary, C. Sridhar, M. L. Kantam, B. Sreedhar, Tetrahedron Lett. 2004, 45, 7319. h) T. F. Knopfel, P. Aschwanden, T. Ichikawa, T. Watanabe, E. M. Carreira, Angew. Chem., Int. Ed. 2004, 43, 5971. i) S. B. Park, H. Alper, Chem. Commun. 2005, 1315. j) B. M. Trost, M. T. Rudd, J. Am. Chem. Soc. 2005, 127, 4763. k) Q. Xu, E. Rozners, Org. Lett. 2005, 7, 2821. l) Y. Yamamoto, H. Hayashi, T. Saigoku, H. Nishiyama, J. Am. Chem. Soc. 2005, 127, 10804. m) N. Gommermann, P. Knochel, Chem. Commun. 2005, 4175. n) B. Sreedhar, P. S. Reddy, B. V. Prakash, A. Ravindra, Tetrahedron Lett. 2005, 46, 7019. o) M. L. Kantam, B. V. Prakash, C. R. V. Reddy, B. Sreedhar, Synlett 2005, 2329. p) X. Guinchard, Y. Vallee, J.-N. Denis, Org. Lett. 2005, 7, 5147. q) N. Gommermann, P. Knochel, Synlett 2005, 2799. r) L. Zani, S. Alesi, P. G. Gozzi, C. Bolm, J. Org. Chem. 2006, 71, 1558. s) A. Bisai, V. K. Singh, Org. Lett. 2006, 8, 2405. t) N. Gommermann, P. Knochel, Chem. Eur. J. 2006, 12, 4380. u) K. Mohan Reddy, N. Seshu Babu, I. Suryanarayana, P. S. Sai Prasad, N. Lingaiah, Tetrahedron Lett. 2006, 47, 7563. v) N. Gommermann, P. Knochel, Org. Synth. 2007, 84, 1. w) P. Li, L. Wang, Tetrahedron 2007, 63, 5455.
- 3 a) C. W. Kruse, R. F. Kleinschmidt, J. Am. Chem. Soc. **1961**, 83, 216. b) G. F. Hennion, A. C. Perrino, J. Org. Chem. 1961, 26, 1073. c) N. R. Easton, D. R. Cassidy, R. D. Dillard, J. Org. Chem. 1963, 28, 448. d) G. F. Hennion, C. V. DiGiovanna, J. Org. Chem. 1965, 30, 3696. e) H. Frey, G. Kaupp, Synthesis 1990, 931. f) R. Geri, C. Polizzi, L. Lardicci, A. M. Caporusso, Gazz. Chim. Ital. 1994, 124, 241. g) R. Nussbaumer, I. Leitner, K. Mraz, A. Stuetz, J. Med. Chem. 1995, 38, 1831. h) I. A. Poplavskaya, T. B. Dembitskaya, Zh. Org. Khim. 1995, 31, 665. i) D. Semeril, J. Le Norte, C. Bruneau, P. H. Dixneuf, A. F. Kolomiets, S. N. Osipov, New J. Chem. 2001, 25, 16. j) M. Z. Ovakimyan, S. K. Barsegyan, M. G. Indzhikyan, Russ. J. Chem. 2002, 72, 1938. k) J. W. Lane, R. L. Halcomb, Org. Lett. 2003, 5, 4017. l) H. Fukumoto, K. Takahashi, J. Ishihara, S. Hatakeyama, Angew. Chem., Int. Ed. 2006, 45, 2731. m) A. Arcadi, F. Marinelli, L. Rossi, M. Verdecchia, Synthesis 2006, 2019.
- 4 a) T. Murai, Y. Mutoh, Y. Ohta, M. Murakami, *J. Am. Chem. Soc.* **2004**, *126*, 5968. b) T. Murai, R. Toshio, Y. Mutoh, *Tetrahedron* **2006**, *62*, 6312.
- 5 For recent reviews: a) A. J. Moore, in *Comprehensive Organic Functional Group Transformations II*, ed. by A. R. Katritzky, R. J. K. Taylor, Elsevier Ltd., Oxford, **2005**, Vol. 5, p. 519. b) C. Flynn, L. Haughton, in *Comprehensive Organic*

- Functional Group Transformations II, ed. by A. R. Katritzky, R. J. K. Taylor, Elsevier Ltd., Oxford, **2005**, Vol. 5, p. 571. c) T. Murai, in *Topics in Current Chemistry*, ed. by S. Kato, Springer GmbH, Heidelberg, **2005**, p. 247. d) M. Koketsu, H. Ishihara, Curr. Org. Synth. **2007**, 4, 15. e) M. Koketsu, H. Ishihara, in Handbook of Chalcogen Chemistry: New Perspectives in Sulfur, Selenium, Tellurium, ed. by F. A. Devillanova, Royal Society of Chemistry, Cambridge, **2007**, pp. 145–194.
- 6 a) J. Bethke, K. Karaghiosoff, L. A. Wessjohan, *Tetrahedron Lett.* **2003**, *44*, 6911. b) V. Saravanan, C. Mukherjee, S. Das, S. Chandrasekaran, *Tetrahedron Lett.* **2004**, *45*, 681. c) G. Hua, Y. Li, A. M. Z. Alexandra, J. D. Woollins, *Org. Lett.* **2006**, *8*, 5251.
- 7 a) T. Murai, H. Aso, Y. Tatematsu, Y. Itoh, H. Niwa, S. Kato, *J. Org. Chem.* **2003**, *68*, 8514. b) T. Murai, H. Niwa, T. Kimura, F. Shibahara, *Chem. Lett.* **2004**, *33*, 508. c) T. Murai, Y. Ohta, Y. Mutoh, *Tetrahedron Lett.* **2005**, *46*, 3637. d) T. Murai, H. Sano, H. Kawai, H. Aso, F. Shibahara, *J. Org. Chem.* **2005**, *70*, 8148. e) T. Murai, Y. Mutoh, K. Fukushima, *Lett. Org. Chem.* **2006**, *3*, 409. f) F. Shibahara, A. Kitagawa, E. Yamaguchi, T. Murai, *Org. Lett.* **2006**, *8*, 5621. g) T. Murai, F. Asai, *J. Am. Chem. Soc.* **2007**, *129*, 780. h) F. Shibahara, A. Suenami, A. Yoshida, T. Murai, *Chem. Commun.* **2007**, 2354.
- 8 a) T. Murai, H. Aso, S. Kato, *Org. Lett.* **2002**, *4*, 1407. b) T. Murai, M. Ishizuka, A. Suzuki, S. Kato, *Tetrahedron Lett.* **2003**, *44*, 1343. c) Y. Mutoh, T. Murai, *Org. Lett.* **2003**, *5*, 1361. d) T. Murai, A. Fujishima, C. Iwamoto, S. Kato, *J. Org. Chem.* **2003**, *68*, 8514. e) Y. Mutoh, T. Murai, *Organometallics* **2004**, *23*, 3907.
- 9 a) Y. Mutoh, T. Murai, S. Yamago, *J. Am. Chem. Soc.* **2004**, *126*, 16696. b) Y. Mutoh, T. Murai, S. Yamago, *J. Organomet. Chem.* **2007**, *692*, 129.
- 10 T. Murai, T. Ezaka, S. Kato, *Bull. Chem. Soc. Jpn.* **1998**, 71, 1193.
- 11 M. Koketsu, Y. Okayama, H. Aoki, H. Ishihara, *Heteroat. Chem.* **2002**, *13*, 195.
- 12 T. Murai, Y. Mutoh, S. Kato, Org. Lett. 2001, 3, 1993.
- 13 Selenoformaldehyde has been reported to be an unstable species, but can be trapped with dienes: a) H. Bock, S. Aygen, P. Rosmus, B. Solouki, E. Weissflog, *Chem. Ber.* 1984, 117, 187. b) R. H. Judge, D. C. Moule, *J. Am. Chem. Soc.* 1984, 106, 5406. c) R. D. Brown, P. D. Godfrey, D. McNaughton, *Chem. Phys. Lett.* 1985, 118, 29. d) G. A. Krafft, P. T. Meinke, *J. Am. Chem. Soc.* 1986, 108, 1314. e) F. S. Guziec, Jr., L. J. Guziec, in *Comprehensive Organic Functional Group Transformation*, ed. by A. R. Katritzky, O. Meth-Cohn, C. W. Rees, Pergamon, Oxford, 1995, Vol. 3, pp. 381–401.